
Paul Martin Enano​ ​ ​ CS455 PA2 Design Document​ ​ 04/13/2025

Introduction
In this assignment, I implemented 2 reliable data transfer protocols called Selective Repeat (SR)
and Go-Back-N with Selective Ack (GBN+SACK). The goal was to correctly handle various
states of error such as packet loss and corruption while handling the transfer of data from a
sender (A) to a receiver (B).

Protocol Design
I implemented SR using a configurable sliding window in which the receiver buffers the out of
order packets and then sends an ACK for each individual packet. Thus, by storing the out of
order packets, the receiver delivers them in sequential order to layer 5 after any of the missing
packets arrive.

I implemented GBN+SACK with the sender maintaining a sliding window and transmitting
packets within the window. I included SACK to help the sender avoid retransmitting any packets
the receiver already has and arrived out of order. And I also incorporated cumulative ACKS for
the sliding window which is standard in GBN without SACK, to make sure that recovery is
available in cases of packet loss or corruption.

Results and Analysis
I conducted an experiment with SR using retransmission timeout values of 20, 30, 50, 100, 200,
and 500, and from my observations, I noticed a tradeoff between retransmission frequency and
communication efficiency. The lower timeout values of 20 and 30 had more frequent
retransmissions, which resulted in a higher throughput. While a higher throughput isn’t
necessarily bad, it could potentially result in network congestion and wasted bandwidth. As I
predicted, with the slightly larger timeout values of 50 and 100, retransmissions decreased while
still allowing for a reasonably timed recovery from loss. However, when testing the higher
timeout values of 200 and 500, the number of retransmissions decreased by a lot. From my
observations, the tradeoff with this is that there is a higher average communication time and
RTT. This is because the sender is waiting much longer before retransmitting lost packets which
consequently lead to a delayed recovery and a slower throughput.

Next I conducted the same experiment with GBN+SACK. At lower timeout values like 20 and
30, I noticed that the sender detected the losses quickly which led to a faster recovery and lower
average communication times of 15.27 ms and 17.74ms respectively. However it did have more
frequent retransmissions. Overall, this approach kept communication times efficient but also
probably increased the network overhead. Then with timeout values of 50 and 100, I noticed
that retransmission remained similar to each other, but communication time increased by a lot.
At 100, the communication time was 36.87 which could imply that as a result of the larger delay,
the sender’s ability to recover from loss suffers. And like SR, at high timeouts like 200 and 500,
the retransmissoin dropped by a lot, but the sender most likely waited too long before detecting
the lost packets which resulted in much higher communication times. And from the results, I
observed that the trade off in GBN+SACK is that at the cost of more network congestion there
are smaller timeouts.

Paul Martin Enano​ ​ ​ CS455 PA2 Design Document​ ​ 04/13/2025

For the above figures, I evaluated the performance in terms of loss and corruption with SR and
GBN+SACK. Each data point in the figures were generated by performing 3 tests, each with a
unique seed to bring it variability in network conditions and variables. I felt like this approach
guaranteed that the results weren’t outliers. And after collecting the average communication
time for each configuration, I computed 90% confidence intervals. The intervals can be seen as
the error bars above and under the data points.

When measuring throughput (TPUT), goodput (GPUT) and average packet delay, I performed
the experiment under the loss probability of 0.1 and corruption probability of 0.1. Using this
setup I observed that SR and GBN+SACK yield similar TPUT of 0.013 packet/ms and GPUT of
0.005 packets/ms. However, GBN+SACK resulted in a slightly higher TPUT with 0.0137
packets/ms in one test while SR resulted in 0.0136. The GPUT was about the same for both
protocols which shows that the final number of packets that were successfully deliver are the
same.

Also both protocols experienced a similar number of retransmissions, ratio of lost packets and
ratio of corruption. I think the results remain consistent because each protocol eventually
recovers and delivers all 1000 packets. The average RTT is lower for GBN+SACK is also lower
for GBN+SACK which came at about 11.2 ms, as compared to SR’s 12.4ms. I think this could
be due to the differences in how the two protocols handle their acknowledgements and the
differences in how their windows behave. Similarly, I saw that both protocols had similar APD for
recovered and successful deliveries which came to about 25.9 ms for GBN+SACK and 27.0 ms
for SR.

Paul Martin Enano​ ​ ​ CS455 PA2 Design Document​ ​ 04/13/2025

Nonetheless, despite some differences in the metrics, SR and GBN+SACK reliably delivered all
the packets within a similar range of each other.
​ ​ ​
Formulas Used

// Throughput

 double totalTime = endTime - startTime;

 int totalPacketsSent = totalOriginalPackets + totalRetransmissions +

totalACKsSent;

 double throughput = totalPacketsSent / totalTime;

 System.out.println("Throughput: " + throughput + " p/ms");

 // Goodput

 double goodput = totalDeliveredPackets / totalTime;

 System.out.println("Goodput: " + goodput + " p/ms");

 // Average Packet Delay

 double averagePacketDelay = avgCommunicationTime;

 System.out.println("Average Packet Delay: " + averagePacketDelay + " ms");

Confidence Intervals​

def compute_confidenceInterval(data, confidence=0.90):

 ​ ​ n = len(data)

 ​ ​ mean = np.mean(data)

 ​ s = np.std(data, ddof=1)

 ​ ​ t_value = np.sqrt(n) * s / np.sqrt((n-1) * (1 - confidence)) ​ ​

 ​ ​ h = t_value / np.sqrt(n)

 ​ ​ return mean, h

Paul Martin Enano​ ​ ​ CS455 PA2 Design Document​ ​ 04/13/2025

Trace Cases

Selective Repeat
C1: No Loss + No Corruption

C2: ACK is Lost/Corrupted, Later ACK slides window by >1

Paul Martin Enano​ ​ ​ CS455 PA2 Design Document​ ​ 04/13/2025

C3: Data Packet is Lost/Corrupted, and Retransmitted After Timeout

C4: Data Packet is Lost/Corrupted, and Retransmitted After Receiving Duplicate ACK

Paul Martin Enano​ ​ ​ CS455 PA2 Design Document​ ​ 04/13/2025

C5: Retransmitted Data is Delivered, and Cumulative ACK Moves Window by >1

​

Paul Martin Enano​ ​ ​ CS455 PA2 Design Document​ ​ 04/13/2025

Go Back N
​ C1: No Loss + No Corruption

C2: ACK is Lost/Corrupted, Later ACK slides window by >1

Paul Martin Enano​ ​ ​ CS455 PA2 Design Document​ ​ 04/13/2025

C3: Data Packet is Lost/Corrupted, and Retransmitted After Timeout

C4: Data Packet is Lost/Corrupted, and Retransmitted After Receiving Duplicate ACK

Paul Martin Enano​ ​ ​ CS455 PA2 Design Document​ ​ 04/13/2025

C5: Retransmitted Data is Delivered, and Cumulative ACK Moves Window by >1

Tradeoffs and Discussion
Throughout my analysis, I came to a few interesting conclusions. After running tests with shorter
timeout values, I observed that it reduced the time it took to detect and resent lost packets,
which led to higher throughput. However, I noticed that this also led to more retransmissions
which weren’t necessary. While the longer timeout values reduced the unnecessary
retransmissions, it consequently increased the average packet delay when errors of loss and
corruption occurred.

Both SR and GBN+SACK handled the packet corruption by relying on timeouts for the recovery.
When an acknowledgment or data packet was corrupted, the sender or receiver would
eventually timeout and retransmit the missing data packet. What I noticed is that the two
protocols are different in how many retransmissions they require in different error cases. SR is
more conservative in the approach, while GBN+SACK resents more packets than would be
needed depending on the amount of sequence numbers stored in the sack.

And if I were to expand on this project further, I would want to create a more elegant solution in
handling the sequence number wrapping. For example, if the sequence number space only
ranges from 0 to 65,535, and more than 65,535 packets are transmitted, the implementation of
the protocols would need to be able to distinguish between the old and new packets in terms of
when they wrapped around. In the TCP implementation, the handshake is necessary to initalize
the sequence number, congestion windows, and other variables needed for finalizing a
connection. Hypothetically, I think it could be useful to implement a flag or more logic to indicate
when wrapping is occurring for a segment, so that both the sender and receiver are on the
same page.

	Introduction
	Protocol Design
	Results and Analysis
	
	
	Trace Cases
	
	Tradeoffs and Discussion
	Throughout my analysis, I came to a few interesting conclusions. After running tests with shorter timeout values, I observed that it reduced the time it took to detect and resent lost packets, which led to higher throughput. However, I noticed that this also led to more retransmissions which weren’t necessary. While the longer timeout values reduced the unnecessary retransmissions, it consequently increased the average packet delay when errors of loss and corruption occurred.
	

